Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
Braz. j. microbiol ; 49(4): 856-864, Oct.-Dec. 2018. graf
Article in English | LILACS | ID: biblio-974294

ABSTRACT

ABSTRACT The growth of yeasts in culture media can be affected by many factors. For example, methanol can be metabolized by other pathways to produce ethanol, which acts as an inhibitor of the heterologous protein production pathway; oxygen concentration can generate aerobic or anaerobic environments and affects the fermentation rate; and temperature affects the central carbon metabolism and stress response protein folding. The main goal of this study was determine the implication of free fatty acids on the production of heterologous proteins in different culture conditions in cultures of Pichia pastoris. We evaluated cell viability using propidium iodide by flow cytometry and thiobarbituric acid reactive substances to measure cell membrane damage. The results indicate that the use of low temperatures and low methanol concentrations favors the decrease in lipid peroxidation in the transition phase from glycerol to methanol. In addition, a temperature of 14 ºC + 1%M provided the most stable viability. By contrast, the temperature of 18 ºC + 1.5%M favored the production of a higher antibody fragment concentration. In summary, these results demonstrate that the decrease in lipid peroxidation is related to an increased production of free fatty acids.


Subject(s)
Pichia/metabolism , Fatty Acids, Nonesterified/metabolism , Pichia/growth & development , Pichia/genetics , Temperature , Recombinant Proteins/genetics , Culture Media/metabolism , Culture Media/chemistry , Methanol/metabolism , Fermentation , Glycerol/metabolism
2.
Braz. j. microbiol ; 49(supl.1): 119-127, 2018. tab, graf
Article in English | LILACS | ID: biblio-974317

ABSTRACT

Abstract Nowadays, it is necessary to search for different high-scale production strategies to produce recombinant proteins of economic interest. Only a few microorganisms are industrially relevant for recombinant protein production: methylotrophic yeasts are known to use methanol efficiently as the sole carbon and energy source. Pichia pastoris is a methylotrophic yeast characterized as being an economical, fast and effective system for heterologous protein expression. Many factors can affect both the product and the production, including the promoter, carbon source, pH, production volume, temperature, and many others; but to control all of them most of the time is difficult and this depends on the initial selection of each variable. Therefore, this review focuses on the selection of the best promoter in the recombination process, considering different inductors, and the temperature as a culture medium variable in methylotrophic Pichia pastoris yeast. The goal is to understand the effects associated with different factors that influence its cell metabolism and to reach the construction of an expression system that fulfills the requirements of the yeast, presenting an optimal growth and development in batch, fed-batch or continuous cultures, and at the same time improve its yield in heterologous protein production.


Subject(s)
Pichia/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Carbon/metabolism , Promoter Regions, Genetic , Pichia/growth & development , Pichia/metabolism , Temperature , Industrial Microbiology
3.
Braz. j. microbiol ; 48(3): 419-426, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-889135

ABSTRACT

Abstract Antibodies and antibody fragments are nowadays among the most important biotechnological products, and Pichia pastoris is one of the most important vectors to produce them as well as other recombinant proteins. The conditions to effectively cultivate a P. pastoris strain previously genetically modified to produce the single-chain variable fragment anti low density lipoprotein (-) under the control of the alcohol oxidase promoter have been investigated in this study. In particular, it was evaluated if, and eventually how, the carbon source (glucose or glycerol) used in the preculture preceding cryopreservation in 20% glycerol influences both cell and antibody fragment productions either in flasks or in bioreactor. Although in flasks the volumetric productivity of the antibody fragment secreted by cells precultured, cryopreserved and reactivated in glycerol was 42.9% higher compared with cells precultured in glucose, the use of glycerol in bioreactor led to a remarkable shortening of the lag phase, thereby increasing it by no less than thrice compared to flasks. These results are quite promising in comparison with those reported in the literature for possible future industrial applications of this cultivation, taking into account that the overall process time was reduced by around 8 h.


Subject(s)
Pichia/metabolism , Industrial Microbiology/methods , Carbon/metabolism , Single-Chain Antibodies/biosynthesis , Antibodies/metabolism , Pichia/growth & development , Pichia/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Culture Media/metabolism , Culture Media/chemistry , Single-Chain Antibodies/genetics , Fermentation , Glycerol/metabolism , Lipoproteins, LDL/immunology , Antibodies/genetics
4.
Braz. j. microbiol ; 45(4): 1469-1475, Oct.-Dec. 2014. graf
Article in English | LILACS | ID: lil-741302

ABSTRACT

The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and Candida guilliermondii growth in sugarcane bagasse hemicellulosic hydrolysate supplemented with different nitrogen sources including rice bran extract, an important by-product of agroindustry and source of vitamins and amino acids. Experiments were carried out with hydrolysate supplemented with rice bran extract and (NH4)2SO4; peptone and yeast extract; (NH4)2SO4, peptone and yeast extract and non-supplemented hydrolysate as a control. S. stipitis produced only ethanol, while C. guilliermondii produced xylitol as the main product and ethanol as by-product. Maximum ethanol production by S. stipitis was observed when sugarcane bagasse hemicellulosic hydrolysate was supplemented with (NH4)2SO4, peptone and yeast extract. Differently, the maximum xylitol formation by C. guilliermondii was obtained by employing hydrolysate supplemented with (NH4)2SO4 and rice bran extract. Together, these findings indicate that: a) for both yeasts (NH4)2SO4 was required as an inorganic nitrogen source to supplement sugarcane bagasse hydrolysate; b) for S. stipitis, sugarcane hemicellulosic hydrolysate must be supplemented with peptone and yeast extract as organic nitrogen source; and: c) for C. guilliermondii, it must be supplemented with rice bran extract. The present study designed a fermentation medium employing hemicellulosic hydrolysate and provides a basis for studies about value-added products as ethanol and xylitol from lignocellulosic materials.


Subject(s)
Candida/metabolism , Cellulose/metabolism , Culture Media/chemistry , Oryza , Plant Extracts , Pichia/metabolism , Saccharum/metabolism , Candida/growth & development , Ethanol/metabolism , Pichia/growth & development , Xylitol/metabolism
5.
Braz. j. microbiol ; 45(2): 485-490, Apr.-June 2014. ilus, graf
Article in English | LILACS | ID: lil-723103

ABSTRACT

Pichia pastoris is a methylotrophic yeast used as an efficient expression system for heterologous protein production as compared to other expression systems. Considering that every cell must respond to environmental changes to survive and differentiate, determination of endogenous protein related to heat stress responses and hypoxia, it would necessary to establish the temperature and methanol concentration conditions for optimal growth. The aim of this study is characterize the culture conditions through the putative biomarkers in different conditions of temperature and methanol concentration. Three yeast cultures were performed: 3X = 3% methanol -10 °C, 4X = 3% methanol -30 °C, and 5X = 1% methanol -10 °C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. The western blot results of HIF-1α and HSP-90 did not indicate statistically significant in the culture conditions studied. Respect to biomarkers location, HIF-1α and HSP-90 presented differences between cultures. In conclusion, the results suggest the cultures in a hypoxic condition produce a high density and yeast cells smaller. Beside the high density would not necessary related with a high production of recombinant proteins in modified-genetically P. pastoris.


Subject(s)
Fungal Proteins/analysis , Pichia/chemistry , Pichia/growth & development , Anaerobiosis , Batch Cell Culture Techniques , Blotting, Western , Fermentation , Immunohistochemistry , Methanol/metabolism , Temperature
6.
Rev. ciênc. farm. básica apl ; 35(2): 279-284, jun. 2014.
Article in Portuguese | LILACS | ID: lil-757775

ABSTRACT

The methylotrophic yeast Pichia pastoris has been developed into an efficient expression system for the production of recombinant protein under the tight control of the methanol-induced alcohol oxidase promoter (pAOX1). In this study, a 2.5-liter culture system was developed for the growth of a P. pastoris strain bearing the GUT1 gene from Saccharomyces cerevisiae for the expression of recombinant glycerol kinase (GK). The best culture conditions to produce high levels of secreted GK were investigated by growing the recombinant strain of P. pastoris in shake flasks and a fermenter. Cell growth and enzyme production were found to be optimal after two days of growth. Enzyme production was affected by the nitrogen source, Difco peptone being the most appropriate for this purpose. Three different rates of air flow (1 to 3 L/min) were tested to observe their effect on cell growth and the secretion of GK into a medium containing 1% methanol as the sole carbon source. Increasing the rate of air bubbling in the culture medium enhanced both cell growth and GK activity, reaching a dry biomass of 7.84 mg/mL, cell viability of 98.4% and a maximal GK activity of 1.57 U/mL, at a flow rate of 2.0 L/minute, at 30° C and pH 6.0. Moreover, the enzyme activity in the P. pastoris culture medium was 2.3 times higher under these conditions than in the shake-flask culture, demonstrating the significant influence of aeration on biomass production and GK activity secreted by P. pastoris...


A levedura metilotrófica Pichia pastoris possui um sistema de expressão eficiente para a produção de proteínas recombinantes. A indução da produção da proteína de interesse é feita com metanol, que é capaz de ativar a transcrição do gene de interesse clonado sob controle do promotor do gene AOX1. Um meio de cultura de 2.5 litros foi elaborado para o crescimento da cepa Pichia pastoris construída com o gene GUT1 de Saccharomyces cerevisiae para expressar a enzima recombinante glicerol quinase (GK). As condições ideais de cultura, para alcançar altos níveis de expressão de GK foram investigados em crescimentos realizados em frascos e fermentador. Crescimento celular e produção de enzima atingiram valores ótimos em dois dias de cultura. A produção enzimática foi afetada pela fonte de nitrogênio no meio. Peptona da marca Difco foi a fonte de nitrogênio mais adequada para a expressão destaenzima. Três diferentes concentrações (1-3 L / min) defluxo de ar foram analisados em ensaios de crescimento celular e secreção da GK, no meio contendo 1 % demetanol como única fonte de carbono. O aumento do fluxo do ar no meio de cultura produziu melhores resultados para o crescimento celular e atividade da GK, atingindo 7,84 mg / mL de biomassa seca e 98,4%de viabilidade. A máxima atividade de GK foi de 1,57U / mL, com a concentração de fluxo de ar de 2,0 L/ minuto a 30 ° C e pH 6.0. O aumento da atividade enzimática foi 2,3 vezes maior no meio de cultura da Pichia pastoris nestas condições, revelando a influência deste parâmetro na produção de biomassa e atividade da GK...


Subject(s)
Humans , Glycerol Kinase , Pichia/growth & development , Biomass
7.
Bol. micol ; 24: 77-82, dic. 2009. tab
Article in English | LILACS | ID: lil-585747

ABSTRACT

Yeasts belonging to the genus Pichia were isolated from glucose syrup samples. Yeasts were identified as P. anomala ( it is now Wickerhamomyces anomala) and P. guilliermondii. These strains did not metabolize the nutritive preservatives, potassium sorbate or sodium benzoate when these were used as the single carbon source. P. anomala grew in culture media containing up to 1200 mg/L of both preservatives. Critical temperature and time of exposure for its inactivation were 60 °C and 3 min, respectively. P. guilliermondii grew in media containing up to 1400 mg/L of both preservatives. Critical temperature and time for inactivation of this Pichia were 80 °C and 2 min. This strain was able to grow in a wide range of temperatures (5 to 30 °C), pH (2.5 to 5.5) and glucose concentrations (200 to 800 g/L). At 5 °C and 800 g/L glucose (osmotic pressure, 0.110 atm), P.guilliermndii grew poorly, with no cell death because of its ability to sporulate. We determined that P. guilliermondii is a potentially contaminating yeast able to develop in a variety of foods, especially those with low pH or with high sugar concentrations (glucose above 400g/L) such as refreshments, juices, syrups and confected fruits and it is resistant to both food preservatives and low temperatures (5°C).


De muestras de jarabe de glucosa fueron aisladas levaduras que pertenecen al género Pichia. Estas fueron identificadas como P.anomala (actualmente Wickerhamomyces anomala) y P. guilliermondii, ambas cepas no metabolizan los conservantes alimenticios, sorbato de potasio o benzoato de sodio, al ser usados como única fuente de carbono. P. anomala desarrolló en medios de cultivo que contenían hasta 1200 mg/L de ambos conservantes. La temperatura y el tiempo crítico de exposición para su inactivación fueron 60 °C y 3 min, respectivamente. P.guilliermondii desarrolló en medios que contienen hasta 1400 mg/l de ambos conservantes. La tº y el tiempo crítico de inactivación fueron 80 °C y 2 min. Esta cepa fue capaz de desarrollar en un amplio rango de temperaturas (5 a 30 °C), pH (2,5 a 5,5) y concentraciones de glucosa (200 a 800 g/L). A 5 °C y glucosa 800 g/L (presión osmótica, 0,110 atm), P. guilliermondii desarrolló pobremente sin que se produzca la muerte celular debido a su capacidad de esporular. Se determinó que P. guilliermondii, es una levadura potencialmente contaminante que puede desarrollarse en una variedad de alimentos, especialmente aquellos con bajo pH o altas concentraciones de azúcar (glucosa, > 400 g/L) como en gaseosas, jugos, jarabes y frutas confitadas, y es resistente a ambos conservantes y bajas tº (5°C).


Subject(s)
Threshold Limit Values , Pichia/isolation & purification , Pichia/growth & development , Pichia/pathogenicity , Temperature , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL